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On the Convergence of the Classical Symmetrical
Condensed Node—-TLM Scheme

Jurgen N. Rebel, Martin Aidam, and Peter Rus&etlow, IEEE

Abstract—This paper presents a proof of convergence of the the TLM scheme converges against an equivalent finite-dif-
transmission-line matrix (TLM) method with a symmetrical ference scheme induced by mapping the TLM wave pulses
condensed node (SCN) in the classical formulation of Johns. It 4, the giscretized electromagnetic field at each time step and

is shown that the convergence order of the SCN-TLM method b " itina the TLM h b ina th
cannot simply be derived from observing the dispersion charac- subsequently exciung the mesh anew by mapping the

teristics of the TLM mesh. The mapping between the discretized discretized electromagnetic field back to the wave pulses.
electromagnetic field and TLM wave amplitudes plays a decisive  If the operating condition of the TLM scheme is altered in
role. Although second-order convergence is observed for coarsethis way, one can derive a so-calledpping-induced finite-dif-
discretizations, which are usually used in practice due to the limi- ¢ o schemavhich can be assessed using standard tech-
tations of memory resources, it is shown and numerically verified . - . .

nigues for proving consistency, stability, and convergence [8].

that the asymptotic convergence reduces to orde®(+/ At). Only k ) .
using a bijective field mapping defined at the cell boundaries Here, we show the convergence of this scheme using Lax’s

yields second-order convergence. theorem, which states that a consistent and stable difference
scheme does converge. The mapping-induced finite-difference
l. INTRODUCTION scheme is first-order accurate.

In a second step, we show that the distance between the
mapping-induced finite-difference scheme and the original
LM scheme becomes arbitrarily small when the time step
pproaches zero. From this, the convergence of the TLM
heme in the formulation of Johns follows.

LTHOUGH the transmission-line matrix (TLM) algo-
rithm with a symmetrical condensed node (SCN) in t
formulation of Johns [1] has been applied to solve electrom
netic-field problems for many years, a proof of convergence 9
the method has yet to be given. The predictions of the theory are verified by numerical exper-
When Johns introduced the SCN-TLM _scheme, he WiRents, which are presented in a following section.
guided by the analogy between the propagation of electromag-
netic waves in free space and the propagation of current and
voltage waves on an interconnected mesh of transmission lines. Il. INITIAL BOUNDARY-VALUE PROBLEM

Therefore, various authors tried to find equivalent finite-dif- paxwell’s equations are given on a bounded regibir R?

ference formulations, which could be derived directly fromith houndaryo$ for stationary media characterized by permit-

Maxwell's equations. Due to the fact that there exists a larggiry, nermeability, and both electric and magnetic conductance
variety of techniques to derive difference operators, the authg,?
nts

went along these lines. Examples are the method-of-mome
[2], Taylor-series expansion [3], [4], finite integration [5], and

conservation law approaches [6]. 5% +o. E=V xH (1)
However, there exists a different interpretation of the TLM ot
. . ; : : i . .
algorithm using a discrete propagator integral, which Ie_ads to b2 o H=—V xE )
second-order convergence [7]. Nevertheless, the classical for- at

mulation of Johns is commonly used.
In this paper, we give a proof of the convergence of t
classical formulation of Johns. This is done by showing that

h\gith appropriate initial values (1Vs)

E(z,t=0) H(Zt=0) (3)

and appropriate boundary conditions
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1. M APPING-INDUCED FINITE-DIFFERENCESCHEMES OF comno.| 1 234156 7 891011121314 15161718
okSmbWM|Y ¥ Z Z|Z Z X X{X X ¥V y[X Yy zZ
TLM-SCN SCHEMES seSmb(@) |[Z Z Y Y[X X zZ Zlyy X X Xy z
Using the notation following [12], we identify the hitherto lyzac dd bbb g -d
. . . . . 2 yz|ca -dd b bl g d
axiomatic Hilbert spacéf,, with the discrete Lebesgue space 37y aclbb d d ¢ d
analogously to (5) 4zy| calbb |dd g
5 zx b bla ¢ d-d g -d
. q 6 zx b blc a -d d g d
£2,At ({k}7 (ZQ,Ax,Ay,AZ(G)) ) (6) 7 x z|d -d achbb g d
8 x z|-dd calbb g -d
where the integer sdtk} denotes the discrete time interval, 9 xy d-d  bbiac g -d
is the appropriate dimension, i.e., 12 for the SCN without stubs 1(1) § i b b dd i bbica . & ¢ d d
anq 18 for the TLM scheme w!th 'stul:.)s. The grid' of discrete 12y x|b b dd cal g -
points where the electromagnetic field is sampled, i.e., the loca- 13 x b bib b h
tion of the TLM nodes, is denoted iy C €2. The norm in this l4y |bb bbl h
; . 15 z b b|b b h
space is defined by [8], [10] 6 x tf ¢t i
17 y f -f £ f j
18 z|ff f f j
_ 2 j
U = U At 7
e e, \/Z . ™
. Fig. 1. Scattering matrix with stubs.
with
prl 1 2 3 415 6 7 8|9 1011 121314151617 18
2 _ J 2 1 X
M, s ayse = | D0 [0, PA28pA2  (8) e
imn,j 3 b.¢
4 Xt
and 5 Y
6 y?
) = > wgmnlkilm,n) ©) 7 Y
k,lmmn 8 Y
9 Z
; _ 1, J T 10 zt
with Uk;lmn = [U’k;l,rn,,n? T 7U’k;l m n] .
. . sy 11 zZ
Briefly recalling the ket vectotsof incident and reflected 2 7t
wave pulses 13 1
14 1
. 15 1
|a) = Z akﬂ,m,n|k7lvmvn> (10) 16 1
k,lm,n 17 1
|b> = Z bk;l,rn,n|k;lvm7n> (11) 18 -1
k,l . .
AL Fig. 2. Extended connection operator.
With @k pn = [a}v;l,rn,rw"'7az;l,rn,n]T and by, », analo-

for denoting local operators are omitted. The TLM algorithm is

gously, and the ket vector of field state ' . : ]
characterized by the two operations scattering and connecting

= vib,m,m k;l7m7n 12
1) k;;nfm, ] ) (12) ) —TSa) )
|ay =I|b). (16)
with fk;l,m,n = [ET, Ey, EZ, Z()Hm, Z()Hy, ZOHZ]kT;l,m,n' . . .
The scattering and connection operators are given by T denotes the time-shift operator, i.d k) = [k+ 1). In-
serting (15) into (16) yields a finite-difference scheme in the
S = Z 11,7, n) St (1, M, (13) incident TLM wave amplitudeas.; . ,, (the operatofl’ com-
e mutes with the operatotE and.S)
F = Z |l,m,7‘L>I‘l7mm<l,m,7’L|. (14) |CL> — TTS|CL> (17)
ILmmn

St m.nandl? ,, ,, are shownin Figs. 1 and 21‘ortheformulat|onT.he |(;iea of writing the.TLM algorithm as an equivalent fi
L M . . nite-difference scheme involves the mapping of the TLM op-
with stubs, and denote the local scattering and connection oper- . . .
rator to the equivalent difference operator for each time step.

ators in their matrix representation [for the formulation withou@ . "
stubs, refer to (23) and (25)]. In the sequel, the inddxes n onsequently, th_e operation conditions are al_tered such that be-
' ' ' fore each scattering event, the TLM state variables are mapped
1The term ket vector has been introduced by Dirac [13] to the discretized field components and immediately mapped



956

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 5, MAY 2001

back to the TLM state variables. The field and wave amplitudgé’ denotes the Hermitian conjugate &f. The operatorX

are related by

decrements the indebby one. The mapping between field and
wave amplitudes is given by

|a) =QIf) (18) )
—Pla). 19 01 0 O 0 1
|fy =Pla) (19) 010 0 o0 1
Applying the mapping operatdr from the left-hand side to (17) 001 0 -1 0
and substituting (19) on the right-hand side of (17) consequently 0 01 O 1 0
results in thanapping-induced finite-difference scheme 0 01 1 0 O
11o o 1 -1 0 0
—_oT_ 2
|f) = PTTSQ|f) (20) P=Q = 2511 00 0o o -1 @7)
or 1 0 0 O 0 1
1 0 0 O 1 0
=N Prsol. 21 100 0 -1 0
Ekj|kf> Ekj Qlif) (21) O
_ S 010 1 0 0
better showing the nature of a finite-difference scheme. As i
According to (21) and (23)—(27), we get
P #£1 22
QP # (22) PrSQ
holds [2] (I denoting the identity operator), one has to consider Dy z 0 0 0 -Dy; Dy
the differences between the mapping-induced finite-difference 0 D 0 Dy 0 —Dx
scheme and the classical TLM scheme before one candrawcon- _ 1 0 0 Dxy —-Dy Dx 0
clusions on the properties of one scheme from the properties of ~ 4 0 D; —-Dy Dyyz 0 0
the other scheme. —-Dy 0 Dx 0 Dxz 0
However, we will show in the following sections that the Dy —Dx 0 0 0 Dxvy
solutions provided by this mapping-induced finite-difference (28)
scheme converge against solutions of Maxwell's equations
using Lax’s theorem and that we can indeed draw conclusiofh
on the behavior of the SCN-TLM scheme. Dy =X'—Xx
—_xt i
IV. M APPING-INDUCED FINITE-DIFFERENCESCHEME OF TLM Dxy _XT +X+Y +Y
WITHOUT STUBS Dy =Y'-Y
—_xt g
First, we want to look at the stubfree formulation. The scat- Dxz=X"+X+2'+2
tering matrix without stubs is given by D;=Z"-2Z

0 S, 8¢
S=|S5 0 S (23)
So S; 0
with
1 1
0 0 = —=
2 2
1 1
0 0 —= =
SOI 1 1 2 2 (24)
- = 0 0
2 2
L1y
2 2

The connection operatdt writes in matrix representation

AX) 0 0
r= 0 AY) O (25)
0 0 A(Z)
with
0 X 0 0
xt 0o o0 o
A(X) = o o0 o x| (26)
0o 0 X" o

Dy, =Y'"+Y+Z +Z

A. Consistency of Mapping-Induced Finite-Difference Scheme

To prove consistency, we expand the sampled exact con-
tinuous solution of the Maxwell’'s equations at the point
(k;1,m,n) in a Taylor series, insert this expanded solution into
the finite-difference scheme, and lat — 0 andAl — 0,
which should yield the desired partial differential equation [8].
Writing each component, this yields the following mapping-in-
duced finite-difference schene:

1
z _ z z
k+1El,rn,,n -7 (kEl,rn—l—l,n + El,rn,—l,n

4
+ Elafrn,n—l—l + 5 Elafrn,n—l)
1 At , ,
Y Y
- 52_Al (kHl,rn,n—l—l Tk Hl,rn,n—l)
(kHl;:rn+l,n Tk Hl;:rnfl,n)' (29)

1 At
£0 2Al1

However, this is exactly the well-known Lax—Friedrichs finite-

difference scheme [8].

2In the case of a TLM without stubs, we only want to look attheomponent
of Ampére’s law. The other equations follow by symmetry and duality.
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ExpandingE®, HY, andH~ in a Taylor series and inserting Z, = (ﬂuﬁ,h - 2)
into (29) yields wa
G, =—0.,AlZy
OE”® AZQ
oA+ 0O — _vw Al
co It liAlmALRALEAE oAl + < At ) R, _To—nlmz_o
JHY Uw
= Gy =—o0,AlZ
0z ALmALRALEAL Al
JdH*? ww
30 Ry =—o0my—
Oy liatmarnatkat (30) Y u% Y Z
G, =—0..AlZy
As expected from a Lax—Friedrichs scheme, the inherent w Al
mapping-induced finite-difference scheme of the classical R. :ﬂami_ (32)
w 0

free-space TLM is first-order accurate in time afdAZ?) in

space.

V. MAPPING-INDUCED FINITE-DIFFERENCESCHEME OF TLM

WITH STUBS

The dashed permittivities and permeabilities are the physical
permittivities and permeabilities of the medium scaled by a con-
stant factor. The reason for this will become evident later. The
stability factor of the TLM schemé is given byhqAl/coAt.

ho is the factor by which the speed of light is scaled in the TLM

We now want to analyze the mapping-induced finite-diffef€sh. The extended connection operator writes in matrix form,
ence scheme of the SCN-TLM scheme with stubs in the fS Shownin Fig. 2. The mapping between field and wave ampli-
mulation of Johns [1]. When ohmic and magnetic losses des is given by
included, we consider the extensions proposed by Naylor and

Desai [14]. For calculating®’L'SQ, as in (28),P, I, S, andQ 0 b, 0 0 0 do\"
are given as follows. 0 b, 0 0 0 —d.
If both electric and magnetic losses need to be considered, 0 0 b 0 —-d, 0
the matrix elements, b, ¢, d, f, g, h, j of the scattering matrix 0 0 b, 0 dy 0
shown in Fig. 1 calculate 0 0 b, dy 0 0
0 0 b —d, 0 0
o G+Y R+ Z by 0 0 0 0 —d.
20G+Y +4) 2R+Z+4) b 0 0 0 0 d.
G+Y R+ 7 p_| b 0 0 0 d, O
c = _ =
20G+Y +4) 2(R+Z+4) bz 0 0 0 —-d, O
2 0 b, 0 —d. O 0
TGy +4 o b 0 d 0 0
2 b Y5 0 0 0 0 0
=7 TRia 0 bY, 0 0 0 0
27 0 0 Y. 0 0 0
g —m 0 0 0 —d, 0 0
YA 0 0 0 0 —-d, 0
= “RiZi4a 0 0 0 0 0 —d.
L G-Y+d (33)
- G+Y+4
4-Z+R (31) with the coefficients
TR+ Z+4 )
With graded space discretizatian\l, vAl, wAl, the material be :u(Gm +Y,+4)
parametery’, Z, R, G are given by 4 — 2
Y (R + Ze +4)
Yo =2(=elh—2) b o— 2
Y w(Gy+ Y, +4
ch —9 (U_wu; 2) ( Y 5 Y )
dy=——————
Y, =2 (uw o 2) YU w(Ry + Zy +4)
b 2
Z, =2 (T”’ ) T w(GL+ Y. +4)
2
o (W _ d.=—— 34
YZ =2 ( w 5,,,h 2) W(RZ + ZZ + 4) ( )
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H H H Tz Y Y
Exc_ltatlon of_the TLM-SCN network is performed by the fol- - '7(,“15[1‘/merl % HY 1)
lowing mapping Ty
+ 2V ( Hf 1 Hi 1) 37
0 v 0 0 0 —w 2 (k Iim4ln — k4 im l,n) ( )
0 v 0 0 0 w with the stability factor of the mapping-induced finite-differ-
0 0 w 0 v 0 ence scheme
0 0 w 0 —v 0 . A
t
0 0 w —u 0 0 Py = = (38)
0 0 w u 0 0 gohogrs Ay
“ 8 8 8 8 w The other stabiltiy factors of the mapping-induced finite-differ-
1 u 0 0 0 _Ow ence scheme are defined analogously. Fortttemponent of
u —v
= Faraday’s law, one gets
Q=35+ 0o 0o 0o 0 (35) y 9
0 v 0 U 0 0 -
0 v 0 —u 0 0 wt Hi o
way, 0 O 0 0 0 . u ZoTgy < . .
* :‘Hnln+_ ‘Hrn n_z‘Hrnn
0 wa, 0 0 0 0 L Ty Ty \ M b T SR L,
0 0 wa; 0 0 0 "
0 0 0 —we O 0 T Hl:m—lm)
0 0 0 0 —vCy 0 u Zor*.
0 0 0 0 0 —wWC, + = 23% <kHla,crn,n+1 - 2kHlafrn,n +x Hlfyn,,n—l)
with the coefficients ¥ Y Y
Y. + G + 2 kEl,rn,n+l Tk El,rn,nfl
a, =2 7% N
’ Yw Tl" z z
Co :(Zac + Ra}) - 7!1 <kEl,rn+l,n Tk El,rn—l,n) (39)
Y, +aG,
Ay = Y, where the stability factors of the mapping-induced finite-differ-
cy =(Z, + R,) ence scheme are defined according to
o =21 G: ) 1 At
Y. Yoy = Gohotis By (40)
c. :(Zz + Rz)- (36) Holtohra LY

It should be remarked that the coefficients are slightly differehfOking more closely at (37) and (39), one recognizes
in comparison to [14]. Only with these modifications, the ma@@ forward-in-time—centered-in-space  (FTCS) scheme,
ping-induced finite-difference scheme derived from the TLNWhich is stabilized by adding artificial dispersion due

scheme given in [14] is consistent with Maxwell's equations.t0 the  GH[ 1, — 2eHp,,, +» Hp,_,) and
(kElafrn+l,n - ZkElajrn,n Tk E;frnfl,n) terms [8]
A. Consistency Expanding the sampled exact solution in a Taylor series,
Again, to prove consistency, we expand the sampled exé{&?lds for Ampere’s law
continuous solution of the Maxwell's equations at the point OE®
(k;1,m,n) in a Taylor series, insert this expanded solution into hoﬁimﬁow N 2 O(At)
the finite-difference scheme, and lat — 0 andAl — 0. SHY fammaynazikat
We only want to look at the-component of both Ampere’s and =— + O(AzQ)
1571 Az mAYy, nAzkAL

Faraday’s laws. The other equations follow by symmetry. For OH*
simplicity, we setAz = wAl, Ay = vAl, andAz = wAl in
the sequel. dy

2
Az mAy,nAz;kAL + O(Ay ) (41)

B. Mapping-Induced Finite-Difference Scheme of Johns’ ~ @nd for Faraday’s law
Matrix Without Losses OH*

Evaluating (21) for bottv, = o andeo,, = o yields the holi;mlio—at 1Az mAynAzkAL + O(At)
following finite-difference scheme, i.e., for thecomponent of y T
. 23 2
Ampére’s law =3 + O(AZ?)
2 Az, mAynAz;kAt

k-l-lEl,rn,,n _ + O(AyQ) (42)
x U Try z > - ay IAz,mAy nAz;kAt
=k El,rn,n + EZ—Z()(kEl,nl+l,n - 2kEl,rn,n +k El,rnfl,n)
U Ty As a consequence, the complete scheme is accurate of the order

+ ;Z—Zo(k ?jm,n-l—l - 2kE?jm,n + Ef:"lW—l) O(At) + O(AJ;Q) + O(AyQ) + O(AzQ)
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Letting At — 0 and Al — 0, the higher order terms and for Faradays law

vanish, and we are left with

15 D5 oHY OH~* k+1Hlenl,n
]7/05;3;50 ot = — 9 + 9 (43) U Z()T;
% 4 = kHlafrn,n + — 2 . <kHla,crn+l,n - 2kHla,crn,n
and + kHlafrn—l,n>
OH® OFY OF*
hopi.,, = — 44 u Zors,
OI/L I’LO at az ay ( ) + ; 0239,. <kHla:;nl7n+l _ ZkHZ},,n’n

which is the desired partial differential equation, except for both .
dashed permittivity and permeability being scaledigy Con- + kHme—l)
sequently, the relation between physical media parameters and o
TLM media parameters is given by + 5 <kE§fnw+1 - kEff,,m1>

#*

r

(45) - % <kElZ,rn+l,n - kEf,rn—l,n) (48)

e = hoel.  pu- = hop..

Hence, 'fdthte mappilrlg-mdLrJ]ce.d flrlte-g!fferen_;:s LM if.h.?me @ith the stability factors of the mapping-induced finite-differ-
supposed to simulate a physical medium with permittivity and. . "< 1o e defined according to

permeability, its corresponding TLM media parameters in the

stubs (32) have to be scaled by in accordance with (45). The

reason for this is that the propagation velocity in the TLM mesh . 1

is given by the product oky and the plane-wave propagation L

velocity of the medium to be modeled. In case of a TLM without

stubs, the higher propagation velocity of in the TLM mesh could

be seen as a result of the inherent Lax—Friedrichs scheme of lih¢48), we can recognize again the FTCS scheme with added

mapping-induced finite-difference scheme. artificial dispersion, as in (39). The scheme considering ohmic
losses (46) is of the same type, whereaddheard-in-timeterm

C. Mapping-Induced Finite-Difference Scheme of Johns’ is modified to account for the losses.

Matrix with Losses A Taylor series expansion of the sampled exact solution re-

Toillustrate how a mapping-induced finite-difference schenfllts for Ampere’s law in
following (20) and (21) looks as if we include losses, we con-
sider the case with ohmic losses. Considering both ohmic and
magnetic losses would yield a scheme with a large number ofyzge
terms, and its representation would only blur the main idea.
Considering only ohmic losses, the mapping-induced finite-
difference scheme writes

At

= — 49
NOhON1‘x Ay ( )

oE*
e ——— O(At
ot Az mAYy, nAz;kAL + ( )

+ aexE’”‘
_ OHY
0z

x oH*

+ O(AY)
Az, mAy, nAz;kAL

+ O(At) + O(AZ?)
Az mAy,nAz;kAL

2(60h0€;,w)2 — Ato’?w

k 1Emrn n = kE lrn n 2
+ Lm, 2(50}105;,30)2 + 2505;,300'639 + AtO’gm Lm, ay 1Az, mAY nAZkAL + O(At) + O(Ay ) (50)
U Tz, T T T
E 2ZZZ) <kEl,rn+1,n - 2kEl,rn,,n + kEl,rn,—l,n)
U T and for Faraday’s law results in
;2—Z:) <kElafrn,n+1 - 2kElafrn,n + kE;inz,n—l)
Twz : : gH”
- | xH] — 1H] Roftofthy, —— O(At
2 <k Lmontl b l,rn,nl) 0HOHre ot IAz,mAy nAzkAt + ( )
+ D (G H i — vH (46) _ o + O(AL) + O(A22)
2 kHtmtln kHm—1n 9z IAz,mAynAz;kAt :
oF*
- O(At) + O(Ay?). (51
ay Az, mAy nAz;kAtL + ( )+ ( 4 ) ( )

with the stability factors of this mapping-induced finite-differ-
ence scheme given by

Hence, the complete scheme (all six components) is accurate
of the orderO(At), as the spatial derivatives have also associ-
ated with them higher order terms of the ord&tAt). Letting

. 2h0€0€;,m + e At At (47)
~ 2(eohoel)? + 2e0el,00n + Ato2, Ay

Tay
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At — 0 andAl — 0, the higher order terms vanish, and we  VII. CONVERGENCE OF THECLASSICAL TLM SCHEME

are left with the first component of Ampére’s law A. Convergence

OE* OHY OH? In the last sections, we have shown that if the operating
’105%507 4+ 0 B = — 3 + 3 (52) conditions of the TLM scheme are slightly changed, we can
z Y deduce mapping-induced finite-difference schemes for Johns’
SCN with and without stubs. For these mapping-induced
finite-difference schemes, we have analytically proven conver-

herd OH® _OFY OF° 53) 9gence using Lax’s theorem.
Otz 0 - (53) In this section, we also want to show that this result implies

at dz dy
except that the relative dashed permittivity and permeabili&igﬁg\:‘esrgence of the TLM scheme under normal operating

are again scal_eq .b.)yo’ as in (43) anq_ (.44)' Consequently, the We have shown via Lax’s theorem that
physical permittivities and permeabilities are scaled, as in (45),
which is, again, a consequence of the propagation velocity in
the TLM mesh.

and

lim [[(PTTSQ)*f(0) - f(kAL)| — 0. (59)
VI. STABILITY OF MAPPING-INDUCED FINITE-DIFFERENCE
SCHEMES OFTLM—-SCN SCHEMES

To satisfy Lax’s theorem, we need to show that the mapping-
induced finite-difference scheme of the SCN is stable.

One way of showing stability is to apply a discrete Fourier
transform in the spatial variables 18/°5¢Q and show that the Consequently, we need to show that
eigenvalues are bounded by one [8]. As one can only, in spe-
cial cases, calculate the eigenvalues of square matrices of order

Now, we want to show that this implies

lim [PAITS)Qf(0) ~ f(EAR)| — 0. (60)

; : ; lim ||[(PTTSQ)* — P(TTS)*Q|| — 0. (61)
greater than five analytically, we have to follow a different ar- At—0
gument.
It is a matter of fact that if Applying the Schwarz inequality to (61) yields
Yol ZOA Y[ Z0A[Y:] 20 (54)  [I((PTTSQ)" — P(TTS)Q)|
Ze] 2 0N |Z,[ 2 0A|Z.] 20 (55) = |PT*(TSQP - T'S)*'TSQ)|

< |PT*H||(FSQP —TS)||*~H|ITTS||Q].  (62)
is fulfilled, the TLM algorithm is stable. AS§ is unitary, itis also

bounded [15]1”is a shift operator, therefore, itis isometric [15Jopviously, all norms on the right-hand side of inequality (62)
and, hence, there exists an upper bound for the operator ngff8 phounded. We now need to show that one of the terms on

of I'S3 the right-hand side of the inequality becomes arbitrarily small
TS| < C (56) and constitutes an upper bound for the distance between the two
= schemes.
We essentially want to show that The induced norm of an operator is defined by [8]
ITS|| < ¢, = ||PTSQ|| < Cs. (57) 1Al = Sup | Az]]. (63)

which is equivalent to We can estimate the operator norm by considering the norm of

the sum of the columns, as we have a matrix representation of

IPTSQ| < ||PIITS|QI < Cs. (58) the operator at our hands, i.e.,
All Hilbert spaces of the same dimension are isomorphic and, sup [|Az|| < Z |\ ]| Aes]|- (64)
consequently and@ can be represented by matrieeg™ <™. ll=ll<1 J
All matricese R™*™ are continuous. Moreover, the mappings
P andQ are both linear. The ), denote constants. We will focus on the fad{@tSQP —

All' linear and continuous operators are bounded [15] anghg)|.
hence, the mapping-induced finite-difference scheme of thejn case of a TLM without stubs, we get, fgr= 1, (65),
which indeed, is the fact.

At — 0 impliesk — oo with limy, Aty k = T, where{At,} is an
3|S|| = ||I'TS|| as the time-shift operatdF is also isometric. arbitrary zero sequence.
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number of TLM cells in ther-, 4y-, andz-directions of the com- )
putational domain, respectively. It is only summed adver, n Zy, Y bl

[see the definition of the norm (7), (8)], as the operafdrs§, @, X 0ot cireuited
andP act on(42 ax Ay a-(G))*?. Taking the limitlAz, mAy | AN
andnAz converge against the width of the domain in directions Al Az, Ag opencircuited

z,y, andz (assuming a block domain). Exploiting the fixed rela-_ ,
tion betweem\ andAt, we are left withy/At .. The constant 79+ 3 TLM model of parallel-plate waveguide.

C; denotes the squared absolute value of the shift operators in TABLE |

(65). The same results for all other terms and, hence, we have PARAMETERS OF DIFFERENT DISCRETIZATION LEVELS
an upper bound of the ordé}(v/At).

=3
o

~NON R W =

Alno [H’I’I’L] Nno Mno
1.0 70 6
0.5 140 12
0.25 280 24
0.125 560 48
0.0625 1120 96
0.03125 2240 192
0.015625 4480 384

B. Order of Accuracy Estimation
In the previous sections, we have shown that

I(PTTSQ)" £(0) — f(kAD)|| < O(A?) (66)

and truncated GAUSSIAN pulse

observation point

|(PITSQ)*£(0) - PATS)*QF(0)] < O(VAt). (67)

:l:‘ n-th discretization

With this, we want to estimate the asymptotic convergence orde

of Johns’ SCN-TLM scheme yielding T [ SRR [+ |- |- o[+ - 1 --]  (n+1)-st discretization
k Fig. 4. TLM models for two subsequent discretization steps.
[P(TTS)*QF(0) — f(kAL)]|
= ||P(TTS)*Qf(0) — (PTTSQ)" f(0) Fig. 3 shows the investigated structure. For a plane wave lin-
+ (PTTSQ)* f(0) — f(kAt)]| early polarized inz-direction and propagating in-direction, a

k k linear row with a single TLM cell in the transverse directions
< |[P(ITS) ka(O) — (PTTSQ) (0] is representative. The ports of the TLM cells are short circuited
+ I(PTTSQ)" (0) — f(RAL)]| in the z-direction and open in thg-direction. Cubic TLM cells
< O(VAY). (68) were considered. The size of a TLM cellAd. The initial field
is distributed across the distancer.,. The distance between

R/itial field and observation point is denotexiz.
only of the order of)(v/A#), as this term dominates for small The numerical IVP was solved with various discretizations.

' The respective simulation parameters can be found in Table 1.

At! . .
At first sight, this appears to contradict common belief, bugt.'g' 4 ;chgmaﬂcally shows the TLM models for two subsequent
iscretization steps.

from the numerical studies presented in the following section, - \% o field distribution, given by the discretized trun-
we will see that, this is, indeed, the case. We can envisage th|% :

. : : ) cated Gaussian pulse
such that not mapping between the discretized field components
and the TLM wave amplitudes at each time step adds an error
term with a small constant of the ordé(v/At) to the first-  Er—(z)

Surprisingly, the classical Johns TLM scheme is asymptotica'

order equivalent finite-difference schemes (29), (37), (39), (46), oo \2
and (48), which otherwise cancels. — ] Eoexp [_W (ﬁ) } ,  fora Sz —mo < 2
0, elsewhere
VIII. N UMERICAL VERIFICATION (69)

To verify the predictions of the previous sections, the prop-
agation of a linearly polarized Gaussian pulsed plane wave(imith 1 = (N,,/2Al,,) andzs = ((N,,/2) + 1)Al,,) is
an axial direction of the TLM mesh was analyzed numericalldistributed across the distanger., = N, ,Al,,. The region,

2¢0)2At3 LM N
I(e5QP ~ T8 = || VB LN (oo vy 2P - 2p)anaga: (69)
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where the initial field is given, is marked by the shaded cells in -
Fig. 4. The pulse is centered aroutdo = (Np,/2 + 1) Al B 8:.? gtou}s)?bs
(see the dashed line of Fig. 4). The width of the pulsg2s = VO R ¢ Stubs (lossy)
NpolAl,o/p, Wherep was chosey/2. = i #
The overall length of the structure was chosen such that, in 2 A
connection with the duration of the simulation, no reflections ; Lo /g/
from the terminating walls in the positive and negativeirec- hs | —
tion occurred at the observation point. In the case with stubs, a = — 2z
medium withe, = 2 andu,. = 1 was assumed. In the case of 3'/
a lossy medium, the electric conductivity was chosen isotropi- 10-3
cally 0. = 30 Sm. In this experiment, the reference solution '
was obtained from a simulation with very small cell size (no. 7 0.0 0.10 100
of Table I). .
The relative error between reference solution and solutions normalized Al
obtained with larger cell sizes is given by Fig.5. Plotof relative error versus normalized cell size for a mapping-induced
finite-difference scheme following (28). The normalizell calculates
Alporm = (70/3)Al,, /0.
. P (|“k|2)
M=\ T 2 (70) HEEHI
(|Ek,ref| ) (53— no stubs
1.073HE—F1  stubs
X stubs (lossy)
with =
e
i i 5
Uk = Eli,ref - Elf (71) .g ‘B’,
2 10
L — %
A. Results e
First, we want to look at the relative errgrof the map- == d
ping-induced finite-difference scheme following (28), (37), 10-3
(39), (46), and (48). In Fig. 5, the relative error between T 0.01 0.10 1.00

reference solution and solutions obtained at larger cell sizes is

plotted versus the cell size normalized to the pulsewidf

the initial Gaussian pulse AL orm = (70/3)Alm/a. We Fig. 6. Plot of relative error versus normalized cell size for a classical TLM
. N ) Flcheme. The normalizefl! calculatesAl, ., = (70/3)Al,. /0.

can clearly discern a first-order convergence rate for both thé

mapping-induced scheme with and without stubs. The reasor]t hould b ked that th ts of
why the slope of the error curve slightly increases toward should b€ remarke at the prools ol convergence pre-

the finest discretization is that the reference solution and tﬁgnted in Section lll —Section VI give statements orethgmp-

solution obtained at the previous discretization step are tBoé!C convergence rate. This means, ascheme with lasgmp- .
close together. totic convergence rate can yield more accurate results at certain

In Fig. 6, where the relative error for Johns' classic ractical) discretization levels than a dissipative scheme within
TLM schen";e is plotted versus the cell size normalized { e end higheasymptoticconvergence rate. It depends on the

the pulsewidtho of the initial Gaussian pulse, we recognizeerror_ cpnstants of the scheme’s error terms that vanish toward
a completely different behavior. Although one observes tge limit Ax — 0[8]. Of course, at some point, the scheme
second-order convergence for coarse discretizations, the sl t.he hlgher convergence.order will be more accurate when
of the error curve reduces toward finer discretizations veF € discretization becomes fine enough.
quickly. One can deduce an asymptotic convergence rate of
VAt in the log-log plot of Fig. 6. As the slope of the error
curve reduces at relatively fine discretization levels, which In this paper, we have presented a proof for the convergence
involves large mesh sizes of about 580500 x 500 cells, of Johns’ original TLM scheme.
this appears to be the reason why one has not observed thi§ the mappings between the discretized electromag-
reduction of the convergence rate before. netic-field components and the TLM wave pulses are applied
Looking more closely at Fig. 6, one observes that, in the each time step, one gets a mapping-induced finite-difference
case of TLM with stubs, the reduction of the convergence raseheme, which is of first order in time in all cases. The map-
appears at coarser discretizations in comparison to the Tlihg-induced finite-difference schemes are convergent due to
scheme without stubs. This is due to the fact that the stubs amohsistency and stability. As the relation between time step and
additional dispersion to the scheme, which further corrupts tepatial increment is fixed, the first-order term is dominant and,
solution, as one has no dispersion in the axial direction in a TL&bnsequently, the first-order convergence was experimentally
mesh without stubs. verified.

normalized Al

IX. CONCLUSION
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Further, it was shown that, from the convergence of the map2] P. Russer and M. Krumpholz, “The Hilbert space formulation of the
ping-induced finite-difference schemes, the convergence of the ~ TLM method,”Int. J. Numer. Modelingvol. 6, no. 1, pp. 29-45, Feb.

. . 1993.
classical Johns TLM scheme follows. However, it emerged th 3] P. A. M. Dirac,The Principles of Quantum MechanicsOxford, U.K.:

asymptotically the TLM scheme using the mapping rules o Oxford Univ. Press, 1958.
Johns is 0n|y of the OI’d&’ﬁ(« /At). The lower asymptotic con- [14] P. Naylor and R. A. Desai, “New three dimensional symmetrical con-

. e densed lossy node for solution of electromagnetic wave problems by
vergence order has also been experimentally verified. TLM,” Electron. Lett, vol. 26, no. 7, pp. 492—495, Mar. 1990.

This means that the mapping between the discretized electr@s] L. Debnath and P. Mikusaki, Introduction to Hilbert Spaces with Ap-
magnetic-field components and the TLM state variables plays _ Plications New York: Academic, 1990.

decisi le. Furth hi It l hat th 16] J. Rebel, M. Aidam, and P. Russer, “A numerical study on the accuracy
adecisive role. Further, this result implies that the convergenc of TLM-SCN formulations for the solution of initial value problems,”

order of the TLM scheme cannot simply be deduced from in-  in 15th Annu. Rev. Progress Appl. Comput. Electromag., @99, pp.
vestigating the dispersion relation, as commonly believed. 628-635.
Consequently, a formulation of the TLM scheme should
be used, which uses the bijective cell-boundary-orientated
mapping between the discretized electromagnetic field and
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