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On the Convergence of the Classical Symmetrical
Condensed Node–TLM Scheme

Jürgen N. Rebel, Martin Aidam, and Peter Russer, Fellow, IEEE

Abstract—This paper presents a proof of convergence of the
transmission-line matrix (TLM) method with a symmetrical
condensed node (SCN) in the classical formulation of Johns. It
is shown that the convergence order of the SCN–TLM method
cannot simply be derived from observing the dispersion charac-
teristics of the TLM mesh. The mapping between the discretized
electromagnetic field and TLM wave amplitudes plays a decisive
role. Although second-order convergence is observed for coarse
discretizations, which are usually used in practice due to the limi-
tations of memory resources, it is shown and numerically verified
that the asymptotic convergence reduces to order ( � ). Only
using a bijective field mapping defined at the cell boundaries
yields second-order convergence.

I. INTRODUCTION

A LTHOUGH the transmission-line matrix (TLM) algo-
rithm with a symmetrical condensed node (SCN) in the

formulation of Johns [1] has been applied to solve electromag-
netic-field problems for many years, a proof of convergence of
the method has yet to be given.

When Johns introduced the SCN–TLM scheme, he was
guided by the analogy between the propagation of electromag-
netic waves in free space and the propagation of current and
voltage waves on an interconnected mesh of transmission lines.
Therefore, various authors tried to find equivalent finite-dif-
ference formulations, which could be derived directly from
Maxwell’s equations. Due to the fact that there exists a large
variety of techniques to derive difference operators, the authors
went along these lines. Examples are the method-of-moments
[2], Taylor-series expansion [3], [4], finite integration [5], and
conservation law approaches [6].

However, there exists a different interpretation of the TLM
algorithm using a discrete propagator integral, which leads to
second-order convergence [7]. Nevertheless, the classical for-
mulation of Johns is commonly used.

In this paper, we give a proof of the convergence of the
classical formulation of Johns. This is done by showing that
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the TLM scheme converges against an equivalent finite-dif-
ference scheme induced by mapping the TLM wave pulses
to the discretized electromagnetic field at each time step and
subsequently exciting the TLM mesh anew by mapping the
discretized electromagnetic field back to the wave pulses.

If the operating condition of the TLM scheme is altered in
this way, one can derive a so-calledmapping-induced finite-dif-
ference scheme, which can be assessed using standard tech-
niques for proving consistency, stability, and convergence [8].
Here, we show the convergence of this scheme using Lax’s
theorem, which states that a consistent and stable difference
scheme does converge. The mapping-induced finite-difference
scheme is first-order accurate.

In a second step, we show that the distance between the
mapping-induced finite-difference scheme and the original
TLM scheme becomes arbitrarily small when the time step
approaches zero. From this, the convergence of the TLM
scheme in the formulation of Johns follows.

The predictions of the theory are verified by numerical exper-
iments, which are presented in a following section.

II. I NITIAL BOUNDARY-VALUE PROBLEM

Maxwell’s equations are given on a bounded region
with boundary for stationary media characterized by permit-
tivity, permeability, and both electric and magnetic conductance
by

(1)

(2)

with appropriate initial values (IVs)

(3)

and appropriate boundary conditions

(4)

An appropriate function space for this initial value problem
(IVP) is given by the Lebesgue space of square integrable
functions [9]–[11]

(5)
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III. M APPING-INDUCED FINITE-DIFFERENCESCHEMES OF

TLM–SCN SCHEMES

Using the notation following [12], we identify the hitherto
axiomatic Hilbert space with the discrete Lebesgue space
analogously to (5)

(6)

where the integer set denotes the discrete time interval,
is the appropriate dimension, i.e., 12 for the SCN without stubs
and 18 for the TLM scheme with stubs. The grid of discrete
points where the electromagnetic field is sampled, i.e., the loca-
tion of the TLM nodes, is denoted by . The norm in this
space is defined by [8], [10]

(7)

with

(8)

and

(9)

with .
Briefly recalling the ket vectors1 of incident and reflected

wave pulses

(10)

(11)

with and analo-
gously, and the ket vector of field state

(12)

with .
The scattering and connection operators are given by

(13)

(14)

and are shown in Figs. 1 and 2 for the formulation
with stubs, and denote the local scattering and connection oper-
ators in their matrix representation [for the formulation without
stubs, refer to (23) and (25)]. In the sequel, the indexes

1The term ket vector has been introduced by Dirac [13]

Fig. 1. Scattering matrix with stubs.

Fig. 2. Extended connection operator.

for denoting local operators are omitted. The TLM algorithm is
characterized by the two operations scattering and connecting

(15)

(16)

denotes the time-shift operator, i.e., . In-
serting (15) into (16) yields a finite-difference scheme in the
incident TLM wave amplitudes (the operator com-
mutes with the operators and )

(17)

The idea of writing the TLM algorithm as an equivalent fi-
nite-difference scheme involves the mapping of the TLM op-
erator to the equivalent difference operator for each time step.
Consequently, the operation conditions are altered such that be-
fore each scattering event, the TLM state variables are mapped
to the discretized field components and immediately mapped
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back to the TLM state variables. The field and wave amplitudes
are related by

(18)

(19)

Applying the mapping operator from the left-hand side to (17)
and substituting (19) on the right-hand side of (17) consequently
results in themapping-induced finite-difference scheme

(20)

or

(21)

better showing the nature of a finite-difference scheme. As

(22)

holds [2] ( denoting the identity operator), one has to consider
the differences between the mapping-induced finite-difference
scheme and the classical TLM scheme before one can draw con-
clusions on the properties of one scheme from the properties of
the other scheme.

However, we will show in the following sections that the
solutions provided by this mapping-induced finite-difference
scheme converge against solutions of Maxwell’s equations
using Lax’s theorem and that we can indeed draw conclusions
on the behavior of the SCN–TLM scheme.

IV. M APPING-INDUCED FINITE-DIFFERENCESCHEME OFTLM
WITHOUT STUBS

First, we want to look at the stubfree formulation. The scat-
tering matrix without stubs is given by

(23)

with

(24)

The connection operator writes in matrix representation

(25)

with

(26)

denotes the Hermitian conjugate of. The operator
decrements the indexby one. The mapping between field and
wave amplitudes is given by

(27)

According to (21) and (23)–(27), we get

(28)

with

A. Consistency of Mapping-Induced Finite-Difference Scheme

To prove consistency, we expand the sampled exact con-
tinuous solution of the Maxwell’s equations at the point

in a Taylor series, insert this expanded solution into
the finite-difference scheme, and let and ,
which should yield the desired partial differential equation [8].
Writing each component, this yields the following mapping-in-
duced finite-difference scheme:2

(29)

However, this is exactly the well-known Lax–Friedrichs finite-
difference scheme [8].

2In the case of a TLM without stubs, we only want to look at thex-component
of Ampère’s law. The other equations follow by symmetry and duality.
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Expanding , , and in a Taylor series and inserting
into (29) yields

(30)

As expected from a Lax–Friedrichs scheme, the inherent
mapping-induced finite-difference scheme of the classical
free-space TLM is first-order accurate in time and in
space.

V. MAPPING-INDUCED FINITE-DIFFERENCESCHEME OFTLM
WITH STUBS

We now want to analyze the mapping-induced finite-differ-
ence scheme of the SCN–TLM scheme with stubs in the for-
mulation of Johns [1]. When ohmic and magnetic losses are
included, we consider the extensions proposed by Naylor and
Desai [14]. For calculating , as in (28), , , , and
are given as follows.

If both electric and magnetic losses need to be considered,
the matrix elements of the scattering matrix
shown in Fig. 1 calculate

(31)

With graded space discretization , the material
parameters are given by

(32)

The dashed permittivities and permeabilities are the physical
permittivities and permeabilities of the medium scaled by a con-
stant factor. The reason for this will become evident later. The
stability factor of the TLM scheme is given by .

is the factor by which the speed of light is scaled in the TLM
mesh. The extended connection operator writes in matrix form,
as shown in Fig. 2. The mapping between field and wave ampli-
tudes is given by

(33)

with the coefficients

(34)
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Excitation of the TLM-SCN network is performed by the fol-
lowing mapping

(35)

with the coefficients

(36)

It should be remarked that the coefficients are slightly different
in comparison to [14]. Only with these modifications, the map-
ping-induced finite-difference scheme derived from the TLM
scheme given in [14] is consistent with Maxwell’s equations.

A. Consistency

Again, to prove consistency, we expand the sampled exact
continuous solution of the Maxwell’s equations at the point

in a Taylor series, insert this expanded solution into
the finite-difference scheme, and let and .
We only want to look at the-component of both Ampère’s and
Faraday’s laws. The other equations follow by symmetry. For
simplicity, we set , , and in
the sequel.

B. Mapping-Induced Finite-Difference Scheme of Johns’
Matrix Without Losses

Evaluating (21) for both and yields the
following finite-difference scheme, i.e., for the-component of
Ampère’s law

(37)

with the stability factor of the mapping-induced finite-differ-
ence scheme

(38)

The other stabiltiy factors of the mapping-induced finite-differ-
ence scheme are defined analogously. For the-component of
Faraday’s law, one gets

(39)

where the stability factors of the mapping-induced finite-differ-
ence scheme are defined according to

(40)

Looking more closely at (37) and (39), one recognizes
a forward-in-time–centered-in-space (FTCS) scheme,
which is stabilized by adding artificial dispersion due
to the and

terms [8].
Expanding the sampled exact solution in a Taylor series,

yields for Ampère’s law

(41)

and for Faraday’s law

(42)

As a consequence, the complete scheme is accurate of the order
.
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Letting and , the higher order terms
vanish, and we are left with

(43)

and

(44)

which is the desired partial differential equation, except for both
dashed permittivity and permeability being scaled by. Con-
sequently, the relation between physical media parameters and
TLM media parameters is given by

(45)

Hence, if the mapping-induced finite-difference TLM scheme is
supposed to simulate a physical medium with permittivity and
permeability, its corresponding TLM media parameters in the
stubs (32) have to be scaled by in accordance with (45). The
reason for this is that the propagation velocity in the TLM mesh
is given by the product of and the plane-wave propagation
velocity of the medium to be modeled. In case of a TLM without
stubs, the higher propagation velocity of in the TLM mesh could
be seen as a result of the inherent Lax–Friedrichs scheme of the
mapping-induced finite-difference scheme.

C. Mapping-Induced Finite-Difference Scheme of Johns’
Matrix with Losses

To illustrate how a mapping-induced finite-difference scheme
following (20) and (21) looks as if we include losses, we con-
sider the case with ohmic losses. Considering both ohmic and
magnetic losses would yield a scheme with a large number of
terms, and its representation would only blur the main idea.

Considering only ohmic losses, the mapping-induced finite-
difference scheme writes

(46)

with the stability factors of this mapping-induced finite-differ-
ence scheme given by

(47)

and for Faradays law

(48)

with the stability factors of the mapping-induced finite-differ-
ence scheme defined according to

(49)

In (48), we can recognize again the FTCS scheme with added
artificial dispersion, as in (39). The scheme considering ohmic
losses (46) is of the same type, whereas theforward-in-timeterm
is modified to account for the losses.

A Taylor series expansion of the sampled exact solution re-
sults for Ampère’s law in

(50)

and for Faraday’s law results in

(51)

Hence, the complete scheme (all six components) is accurate
of the order , as the spatial derivatives have also associ-
ated with them higher order terms of the order . Letting
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and , the higher order terms vanish, and we
are left with the first component of Ampère’s law

(52)

and

(53)

except that the relative dashed permittivity and permeability
are again scaled by , as in (43) and (44). Consequently, the
physical permittivities and permeabilities are scaled, as in (45),
which is, again, a consequence of the propagation velocity in
the TLM mesh.

VI. STABILITY OF MAPPING-INDUCED FINITE-DIFFERENCE

SCHEMES OFTLM–SCN SCHEMES

To satisfy Lax’s theorem, we need to show that the mapping-
induced finite-difference scheme of the SCN is stable.

One way of showing stability is to apply a discrete Fourier
transform in the spatial variables to and show that the
eigenvalues are bounded by one [8]. As one can only, in spe-
cial cases, calculate the eigenvalues of square matrices of order
greater than five analytically, we have to follow a different ar-
gument.

It is a matter of fact that if

(54)

(55)

is fulfilled, the TLM algorithm is stable. As is unitary, it is also
bounded [15]. is a shift operator, therefore, it is isometric [15]
and, hence, there exists an upper bound for the operator norm
of 3

(56)

We essentially want to show that

(57)

which is equivalent to

(58)

All Hilbert spaces of the same dimension are isomorphic and,
consequently, and can be represented by matrices .
All matrices are continuous. Moreover, the mappings

and are both linear.
All linear and continuous operators are bounded [15] and,

hence, the mapping-induced finite-difference scheme of the
SCN–TLM scheme is stable if the TLM algorithm is stable,
which indeed, is the fact.

3k�S�S�Sk = k�TS�TS�TSk as the time-shift operatorTTT is also isometric.

VII. CONVERGENCE OF THECLASSICAL TLM SCHEME

A. Convergence

In the last sections, we have shown that if the operating
conditions of the TLM scheme are slightly changed, we can
deduce mapping-induced finite-difference schemes for Johns’
SCN with and without stubs. For these mapping-induced
finite-difference schemes, we have analytically proven conver-
gence using Lax’s theorem.

In this section, we also want to show that this result implies
the convergence of the TLM scheme under normal operating
conditions.

We have shown via Lax’s theorem that4

(59)

Now, we want to show that this implies

(60)

Consequently, we need to show that

(61)

Applying the Schwarz inequality to (61) yields

(62)

Obviously, all norms on the right-hand side of inequality (62)
are bounded. We now need to show that one of the terms on
the right-hand side of the inequality becomes arbitrarily small
and constitutes an upper bound for the distance between the two
schemes.

The induced norm of an operator is defined by [8]

(63)

We can estimate the operator norm by considering the norm of
the sum of the columns, as we have a matrix representation of
the operator at our hands, i.e.,

(64)

The denote constants. We will focus on the factor
.

In case of a TLM without stubs, we get, for , (65),
shown at the bottom of the following page, where is the

4�t ! 0 impliesk ! 1 with lim �t k = T , wheref�t g is an
arbitrary zero sequence.
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number of TLM cells in the -, -, and -directions of the com-
putational domain, respectively. It is only summed over
[see the definition of the norm (7), (8)], as the operators, , ,
and act on . Taking the limit ,
and converge against the width of the domain in directions

, , and (assuming a block domain). Exploiting the fixed rela-
tion between and , we are left with . The constant

denotes the squared absolute value of the shift operators in
(65). The same results for all other terms and, hence, we have
an upper bound of the order .

B. Order of Accuracy Estimation

In the previous sections, we have shown that

(66)

and

(67)

With this, we want to estimate the asymptotic convergence order
of Johns’ SCN–TLM scheme yielding

(68)

Surprisingly, the classical Johns TLM scheme is asymptotically
only of the order of , as this term dominates for small

At first sight, this appears to contradict common belief, but
from the numerical studies presented in the following section,
we will see that, this is, indeed, the case. We can envisage this
such that not mapping between the discretized field components
and the TLM wave amplitudes at each time step adds an error
term with a small constant of the order to the first-
order equivalent finite-difference schemes (29), (37), (39), (46),
and (48), which otherwise cancels.

VIII. N UMERICAL VERIFICATION

To verify the predictions of the previous sections, the prop-
agation of a linearly polarized Gaussian pulsed plane wave in
an axial direction of the TLM mesh was analyzed numerically.

Fig. 3. TLM model of parallel-plate waveguide.

TABLE I
PARAMETERS OFDIFFERENTDISCRETIZATION LEVELS

Fig. 4. TLM models for two subsequent discretization steps.

Fig. 3 shows the investigated structure. For a plane wave lin-
early polarized in -direction and propagating in-direction, a
linear row with a single TLM cell in the transverse directions
is representative. The ports of the TLM cells are short circuited
in the -direction and open in the-direction. Cubic TLM cells
were considered. The size of a TLM cell is. The initial field
is distributed across the distance . The distance between
initial field and observation point is denoted .

The numerical IVP was solved with various discretizations.
The respective simulation parameters can be found in Table I.
Fig. 4 schematically shows the TLM models for two subsequent
discretization steps.

The initial field distribution, given by the discretized trun-
cated Gaussian pulse

for

elsewhere
(69)

(with and ) is
distributed across the distance . The region,

(65)
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where the initial field is given, is marked by the shaded cells in
Fig. 4. The pulse is centered around
(see the dashed line of Fig. 4). The width of the pulse is

, where was chosen .
The overall length of the structure was chosen such that, in

connection with the duration of the simulation, no reflections
from the terminating walls in the positive and negative-direc-
tion occurred at the observation point. In the case with stubs, a
medium with and was assumed. In the case of
a lossy medium, the electric conductivity was chosen isotropi-
cally Sm . In this experiment, the reference solution
was obtained from a simulation with very small cell size (no. 7
of Table I).

The relative error between reference solution and solutions
obtained with larger cell sizes is given by

(70)

with

(71)

A. Results

First, we want to look at the relative error of the map-
ping-induced finite-difference scheme following (28), (37),
(39), (46), and (48). In Fig. 5, the relative error between
reference solution and solutions obtained at larger cell sizes is
plotted versus the cell size normalized to the pulsewidthof
the initial Gaussian pulse, i.e., . We
can clearly discern a first-order convergence rate for both the
mapping-induced scheme with and without stubs. The reason
why the slope of the error curve slightly increases toward
the finest discretization is that the reference solution and the
solution obtained at the previous discretization step are too
close together.

In Fig. 6, where the relative error for Johns’ classical
TLM scheme is plotted versus the cell size normalized to
the pulsewidth of the initial Gaussian pulse, we recognize
a completely different behavior. Although one observes a
second-order convergence for coarse discretizations, the slope
of the error curve reduces toward finer discretizations very
quickly. One can deduce an asymptotic convergence rate of

in the log–log plot of Fig. 6. As the slope of the error
curve reduces at relatively fine discretization levels, which
involves large mesh sizes of about 500500 500 cells,
this appears to be the reason why one has not observed this
reduction of the convergence rate before.

Looking more closely at Fig. 6, one observes that, in the
case of TLM with stubs, the reduction of the convergence rate
appears at coarser discretizations in comparison to the TLM
scheme without stubs. This is due to the fact that the stubs add
additional dispersion to the scheme, which further corrupts the
solution, as one has no dispersion in the axial direction in a TLM
mesh without stubs.

Fig. 5. Plot of relative error versus normalized cell size for a mapping-induced
finite-difference scheme following (28). The normalized�l calculates
�l = (70=3)�l =�.

Fig. 6. Plot of relative error versus normalized cell size for a classical TLM
scheme. The normalized�l calculates�l = (70=3)�l =�.

It should be remarked that the proofs of convergence pre-
sented in Section III –Section VII give statements on theasymp-
toticconvergence rate. This means, a scheme with lowerasymp-
totic convergence rate can yield more accurate results at certain
(practical) discretization levels than a dissipative scheme within
the end higherasymptoticconvergence rate. It depends on the
error constants of the scheme’s error terms that vanish toward
the limit [8]. Of course, at some point, the scheme
with the higher convergence order will be more accurate when
the discretization becomes fine enough.

IX. CONCLUSION

In this paper, we have presented a proof for the convergence
of Johns’ original TLM scheme.

If the mappings between the discretized electromag-
netic-field components and the TLM wave pulses are applied
at each time step, one gets a mapping-induced finite-difference
scheme, which is of first order in time in all cases. The map-
ping-induced finite-difference schemes are convergent due to
consistency and stability. As the relation between time step and
spatial increment is fixed, the first-order term is dominant and,
consequently, the first-order convergence was experimentally
verified.
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Further, it was shown that, from the convergence of the map-
ping-induced finite-difference schemes, the convergence of the
classical Johns TLM scheme follows. However, it emerged that
asymptotically the TLM scheme using the mapping rules of
Johns is only of the order . The lower asymptotic con-
vergence order has also been experimentally verified.

This means that the mapping between the discretized electro-
magnetic-field components and the TLM state variables plays
a decisive role. Further, this result implies that the convergence
order of the TLM scheme cannot simply be deduced from in-
vestigating the dispersion relation, as commonly believed.

Consequently, a formulation of the TLM scheme should
be used, which uses the bijective cell-boundary-orientated
mapping between the discretized electromagnetic field and
TLM state variables, such as [2] and [7], as TLM schemes with
this mapping indeed exhibitsecond-orderconvergence. In [7],
the TLM scheme is constructed such that the solutions of the
TLM scheme fulfill a consistent second-order finite-difference
scheme. In this formulation, the fields are sampled at the
boundary, and at the cell center the fields are the average of the
field components at the boundary. In [16], we numerically com-
pared the convergence of these different TLM formulations.
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